40 research outputs found

    In-Body Energy Harvesting Power Management Interface for Post Heart Transplantation Monitoring

    Get PDF
    Deep tissue energy harvesters are of increasing interest in the development of battery-less implantable devices. This paper presents a fully integrated ultra-low quiescent power management interface. It has power optimization and impedance matching between a piezoelectric energy harvester and the functional load that could be potentially powered by the heart's mechanical motions. The circuit has been designed in 0.18-µm CMOS technology. It dissipates 189.8 nW providing two voltage outputs of 1.4 V and 4.2 V. The simulation results show an output power 8.2x times of an ideal full-bridge rectifier without an external power supply. The design has the potential for use in self-powered heart implantable devices as it is capable providing stable output voltages from a cold startup

    Design of a Power Management Circuit for an Opto-Electro Stimulator

    Get PDF
    This paper presents the design of an integrated power management circuit for use in an implantable opto-electro stimulator. It features an active rectifier with pulse width modulation (PWM) regulation to generate a 3.3 V regulated output, and a 3-stage high voltage charge pump (CP) that generates a 12 V output from a 3.3 V input with a 20 MHz, two-phase non-overlapping clock generator. The circuits were designed in a 0.18-µm CMOS technology requiring a chip area of 0.048 mm 2 . Simulation results show that the regulating rectifier has a voltage conversion efficiency of 94.3% and 92.8% with an ac input magnitude of 3.5 V and 3.6 V, respectively. The peak power transfer efficiency of the regulated 3.3V output voltage is 70.7% with a maximum output power of 30.3 mW. The CP with an overall on-chip capacitance is 60 pF

    Efficient Dual Output Regulating Rectifier and Adiabatic Charge Pump for Biomedical Applications Employing Wireless Power Transfer †

    Get PDF
    A power management unit (PMU) is an essential block for diversified multi-functional low-power Internet of Things (IoT) and biomedical electronics. This paper includes a theoretical analysis of a high current, single-stage ac-dc, reconfigurable, dual output, regulating rectifier consisting of pulse width modulation (PWM) and pulse frequency modulation (PFM). The regulating rectifier provides two independently regulated supply voltages of 1.8 V and 3.3 V from an input ac voltage. The PFM control feedback consists of feedback-driven regulation to adjust the driving frequency of the power transistors through adaptive buffers in the active rectifier. The PWM/PFM mode control provides a feedback loop to adjust the conduction duration accurately and minimize power losses. The design also includes an adiabatic charge pump (CP) to provide a higher voltage level. The adiabatic CP consists of latch-up and power-saving topologies to enhance its power efficiency. Simulation results show that the dual regulating rectifier has 94.3% voltage conversion efficiency with an ac input magnitude of 3.5 Vp. The power conversion efficiency of the regulated 3.3 V output voltage is 82.3%. The adiabatic CP has an overall voltage conversion efficiency (VCE) of 92.9% with a total on-chip capacitance of 60 pF. The circuit was designed using 180 nm CMOS technology

    Time Stamp – A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications

    Get PDF
    Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or ‘time stamp’ is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency ( fclk = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption

    An integrated bidirectional multi-channel opto-electro arbitrary waveform stimulator for treating motor neurone disease

    Get PDF
    This paper presents a prototype integrated bidirectional stimulator ASIC capable of mixed opto-electro stimulation and electrophysiological signal recording. The development is part of the research into a fully implantable device for treating motor neurone disease using optogenetics and stem cell technology. The ASIC consists of 4 stimulator units, each featuring 16-channel optical and electrical stimulation using arbitrary current waveforms with an amplitude up to 16 mA and a frequency from 1.5 Hz to 50 kHz, and a recording front-end with a programmable bandwidth of 1 Hz to 4 kHz, and a programmable amplifier gain up to 74 dB. The ASIC was implemented in a 0.18μm CMOS technology. Simulated performance in stimulation and recording is presented

    Amino acid residues in five separate HLA genes can explain most of the known associations between the MHC and primary biliary cholangitis.

    Get PDF
    Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disease characterised by progressive destruction of intrahepatic bile ducts. The strongest genetic association is with HLA-DQA1*04:01, but at least three additional independent HLA haplotypes contribute to susceptibility. We used dense single nucleotide polymorphism (SNP) data in 2861 PBC cases and 8514 controls to impute classical HLA alleles and amino acid polymorphisms using state-of-the-art methodologies. We then demonstrated through stepwise regression that association in the HLA region can be largely explained by variation at five separate amino acid positions. Three-dimensional modelling of protein structures and calculation of electrostatic potentials for the implicated HLA alleles/amino acid substitutions demonstrated a correlation between the electrostatic potential of pocket P6 in HLA-DP molecules and the HLA-DPB1 alleles/amino acid substitutions conferring PBC susceptibility/protection, highlighting potential new avenues for future functional investigation

    Association of Cerebral Ischemia With Corneal Nerve Loss and Brain Atrophy in MCI and Dementia

    Get PDF
    IntroductionThis study assessed the association of cerebral ischemia with neurodegeneration in mild cognitive impairment (MCI) and dementia.MethodsSubjects with MCI, dementia and controls underwent assessment of cognitive function, severity of brain ischemia, MRI brain volumetry and corneal confocal microscopy.ResultsOf 63 subjects with MCI (n = 44) and dementia (n = 19), 11 had no ischemia, 32 had subcortical ischemia and 20 had both subcortical and cortical ischemia. Brain volume and corneal nerve measures were comparable between subjects with subcortical ischemia and no ischemia. However, subjects with subcortical and cortical ischemia had a lower hippocampal volume (P < 0.01), corneal nerve fiber length (P < 0.05) and larger ventricular volume (P < 0.05) compared to those with subcortical ischemia and lower corneal nerve fiber density (P < 0.05) compared to those without ischemia.DiscussionCerebral ischemia was associated with cognitive impairment, brain atrophy and corneal nerve loss in MCI and dementia

    Global public perceptions of genomic data sharing: what shapes the willingness to donate DNA and health data?

    Get PDF
    Analyzing genomic data across populations is central to understanding the role of genetic factors in health and disease. Successful data sharing relies on public support, which requires attention to whether people around the world are willing to donate their data that are then subsequently shared with others for research. However, studies of such public perceptions are geographically limited and do not enable comparison. This paper presents results from a very large public survey on attitudes toward genomic data sharing. Data from 36,268 individuals across 22 countries (gathered in 15 languages) are presented. In general, publics across the world do not appear to be aware of, nor familiar with, the concepts of DNA, genetics, and genomics. Willingness to donate one's DNA and health data for research is relatively low, and trust in the process of data's being shared with multiple users (e.g., doctors, researchers, governments) is also low. Participants were most willing to donate DNA or health information for research when the recipient was specified as a medical doctor and least willing to donate when the recipient was a for-profit researcher. Those who were familiar with genetics and who were trusting of the users asking for data were more likely to be willing to donate. However, less than half of participants trusted more than one potential user of data, although this varied across countries. Genetic information was not uniformly seen as different from other forms of health information, but there was an association between seeing genetic information as special in some way compared to other health data and increased willingness to donate. The global perspective provided by our "Your DNA, Your Say" study is valuable for informing the development of international policy and practice for sharing genomic data. It highlights that the research community not only needs to be worthy of trust by the public, but also urgent steps need to be taken to authentically communicate why genomic research is necessary and how data donation, and subsequent sharing, is integral to this
    corecore